

Natural Frequency Testing and Model Correlation of Rocket Engine Structures in Liquid Hydrogen – Phase I, Cantilever Beam

Andrew M. Brown, Ph.D., Jennifer DeLessio, Preston Jacobs
NASA Marshall Space Flight Center
Propulsion Department and M&P Departments

IMAC-36 Orlando, Florida February 12, 2018

Background & Introduction

- Liquid Rocket Engines generally require turbopumps to provide necessary pressure head to fuel and oxidizer propellants.
- Distortions, other Unsteadiness in Fluid flow field generate Harmonic, Narrow-Band Excitation onto all Structural Components in Flow Path, requiring Structural Dynamic Analysis to assess response for both HCF and Ultimate Failure.
- For Pump-Side Components (Inducers and Impellers), several major complications:
 - 1. Structural Components immersed in liquid propellant, which alters not only natural frequencies {f}, but also modes
 - Propellant, and therefore components, are frequently Cryogenic, which has a very significant effect on Young's Modulus, and therefore {f}.
 - Components operate with a tight tip clearance, which alters mass affects.

Typical Turbopump

Testing of J-2X Inducers

- During design of J-2X engine 2006-2012, issue became very important as Liquid Oxygen Inducer predicted to operate at resonance with Higher-Order Cavitation excitation driver.
- Extensive Test/Analysis Program performed to assess risk, including high speed waterflow testing and modal testing in water.
- Same issue now has arisen for implementation of the Space Shuttle Main Engine (now called RS-25) in the new operating conditions of the Space Launch System for the low pressure hydrogen turbopump (LPFP) inducer.

J-2X Subscale Inducer, Not to Scale

1st of 2-Phase Program

- New integrated test/analysis program has been initiated to address risk in comprehensive manner, including
 - Updated waterflow test
 - Hydroelastic analysis and testing
 - Acoustic modeling
 - Natural frequency testing of sub-scale water-flow test inducer in LH2 using unique facilities of MSFC's Cryogenic Test Laboratory.
- 2-Phase LH2 Modal Test Program to Enable Dynamic Model Correlation:
 - 1) Cantilever Beam
 - Same Titanium alloy as RS-25 Inducer.
 - Simple geometry allows high-fidelity, accurate modeling & comparison to academic methods for precise correlation.
 - Since test in LH2, only $\{f\}$, not $[\Phi]$, will change, so only pluck test necessary, not complete modal test.
 - Can apply lessons learned to inducer testing.
 - 2) Sub-Scale Stainless Steel Inducer that will be used in Water-Flow Test.
- Authors have not found documentation of modal testing in LH2 of any kind in the literature.

 A number of publically available sources provide data relating E of Titanium alloy at cryogenic temperatures, as well as several proprietary sources.

Fig. 2 Public Data Relating Young's Modulus of Ti 5-2.5 to Temperature; a) MMPDS, b) Ghisi & Mariani, c) Zhang

- Great deal of both analytical and numerical work on effect of liquid mass on {f}.
- Lindholm (1965) provided excellent baseline experimental work, generating expression for added mass and final frequency $A_{m1} = \frac{\pi}{4} \rho_f a b^2 \qquad \frac{\omega_f}{\omega_v} = \frac{1}{\sqrt{1 + \frac{A_{m1}}{m}}}$
- Liang provided a factor accounting for aspect ratio and for different cant beam mode families

$$A_{m1} = 0.25C_f \frac{\pi \rho_f b}{\rho_p h_p} \qquad C_f = \frac{2 * aspect_ratio}{1 + 2 * aspect_ratio} \qquad \omega_f = \omega_v \sqrt{\frac{1}{1 + \frac{A_{m1}}{C_f}}}$$

- To quantify the decrement of structural natural frequencies in LH2 (mass loading effects) and isolate the effect of temperature (material property effects) on the structural natural frequencies, following plan developed.
 - 1. Ping test in air at room temperature (RT).
 - 2. Fill Cryostat with LH2.
 - 3. Ping test in LH2 (-423°F).
 - 4. Quickly displace LH2 with Helium, ping test in this "Boil-off" configuration (slightly higher temp than LH2).
 - Allow to slowly warm up to RT, fill tank with water, ping test.

Cantilever Beam Test in Cryogenic Test Facility

Facility in operation

- Innovative test apparatus design provides excellent excitation of close-to-fixedend beam.
- 4 thermocouples in Cryostat.
- Strain Gages on top and bottom of beam at peak strain location to provide time histories → natural frequencies

Geometry & Model (With Reaction Column)

- Volume, weight of beam precisely measured to get density.
- The beam and Reaction Member
 Column are connected by four fasteners.
 - This interface initially modeled as a bonded contact, then as pre-loaded bolts to reduce uncertainties as much as possible.

Pre-Test Analysis, Measurement of Actual Configuration

Pre-test numerical (ANSYS) analysis showed target "primary" cantilever modes have almost no column content, but columns was eventually modelled to eliminate uncertainty.

Target "Cantilever" Modes

Correlation Procedure

- Vary room temperature (RT) Young's Modulus to best match 4
 measured natural frequencies, → 4 new calculated frequencies.
- 2. If the resulting RT Modulus is within the expected range
 - a) Apply ANSYS acoustics to determine predictions for frequencies in water and compare to measured frequencies.
 - b) Repeat for the Boil-off case.
- 3. If optimized Modulus at Boil-off conditions is within the spread of available data. If so, extrapolate to LH2 temperature and calculate the natural frequencies using ANSYS and compare to measured frequencies.
- 4. Apply purely analytical techniques developed by Lindholm and Liang to obtain frequency predictions, compare with ANSYS.

Air RT

Testing and Results

- Testing performed August, 2017; thermocouple data not considered precise (apparent 13°F error), and strain gages not entirely steady in water. Otherwise, data good.
- Step-by-step correlation procedure isolating effects of temperature and added-mass generated excellent results; frequency errors < 1% for all cases
- ANSYS Acoustic elements validated for use in predicting fluid added-mass effect.

Table 1 Modal Test and Analysis Summary

Boil-off and LH2 Temperature

Mode	Test (Hz)	ANSYS	% Error					Test (Hz)	ANSYS	% Error	•			
(Test		FEM							FEM					
Order)		Opt-							Optimized					
		imized E							E (Hz)					
1	43.00	42.88	-0.28%					45.00	42.88	28%				
2	270.00	270.00	-0.00%					283.00	282.33	-0.24%				
3	756.25	758.5	0.30%					792.25	793.08	0.10%				
4	1481.25	1488.10	0.46%					1553.00	1555.90	0.19%				
<i>Optimized E</i> 1.7957E+07							Optimize	d E	1.962.	37E+07				
	Wate	Added Mass Frequency Factors				LH2			Added Mass Frequency Factors					
Mode	Test (Hz)	ANSYS	% Error	Test	ANSYS	Lind-	Liang	Test (hz)	ANSYS	% Error	Test	ANSYS	Lind-	Liang
(Test		Acoustic				holm			Acoustic				holm	
Order)		FEM							FEM (Hz)					
1	25.25	25.46	0.82%	0.587	0.594			42.50	42.12	-0.89%	0.944	0.939		
2	161.75	160.30	-0.90%	0.599	0.594			267.50	265.37	-0.80%	0.945	0.940		
3	459.75	459.49	-0.06%	0.608	0.606			750.75	747.48	-0.44%	0.948	0.943		
4	911.00	918.34	0.81%	0.615	0.617			1475.0	1471.50	-0.24%	0.950	0.946		
				0.602	0.603	0.622	0.597				0.947	0.942	0.948	0.941

NASA

Conclusion and Follow-On Work

- Well-controlled test and correlation effort on effect on natural frequency of structures in Liquid Hydrogen performed.
- Excellent agreement between test and analysis obtained
 - Provides improved confidence in Titanium E vs Temp curves at cryogenic.
 - ANSYS acoustic modeling validated for this application.
- Data can now be applied to RS-25 program, and experience applied to Phase II of test on RS-25 Inducer.
- Other follow-on testing plans on the cantilever beam include
 - Place plates along sides of beam to examine effects of tight tip clearance.
 - Perform test in Liquid Nitrogen to generate another data point at a welldefined temperature.
 - Increase surface pressure to reduce possible bubbles around inducer.